Computational Insights into the Dynamic Structural Features and Binding Characteristics of Recombinase UvsX Compared with RecA

Author:

Pan Yue1,Xie Ningkang1,Zhang Xin1,Yang Shuo1,Lv Shaowu12

Affiliation:

1. Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China

2. Bioarchaeology Laboratory, Jilin University, 2699 Qianjin Street, Changchun 130012, China

Abstract

RecA family recombinases are the core enzymes in the process of homologous recombination, and their normal operation ensures the stability of the genome and the healthy development of organisms. The UvsX protein from bacteriophage T4 is a member of the RecA family recombinases and plays a central role in T4 phage DNA repair and replication, which provides an important model for the biochemistry and genetics of DNA metabolism. UvsX shares a high degree of structural similarity and function with RecA, which is the most deeply studied member of the RecA family. However, the detailed molecular mechanism of UvsX has not been resolved. In this study, a comprehensive all-atom molecular dynamics simulation of the UvsX protein dimer complex was carried out in order to investigate the conformational and binding properties of UvsX in combination with ATP and DNA, and the simulation of RecA was synchronized with the property comparison learning for UvsX. This study confirmed the highly conserved molecular structure characteristics and catalytic centers of RecA and UvsX, and also discovered differences in regional conformation, volatility and the ability to bind DNA between the two proteins at different temperatures, which would be helpful for the subsequent understanding and application of related recombinases.

Funder

National Key R&D Program of China

Cross-disciplinary Innovation Project of Jilin University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the Homologous Recombination Process: Methods, Successes and Challenges;International Journal of Molecular Sciences;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3