DNA Photocleavage in the Near-Infrared Wavelength Range by 2-Quinolinium Dicarbocyanine Dyes

Author:

Ahoulou Effibe O.,Drinkard Kaitlyn K.,Basnet Kanchan,St. Lorenz Anna,Taratula Oleh,Henary Maged,Grant Kathryn B.

Abstract

Here, we report the syntheses of two pentamethine cyanine dyes containing quinolinium rings and substituted with either hydrogen (3) or bromine (4) at the meso carbon. The electron withdrawing bromine atom stabilizes dye 4 in aqueous buffer, allowing complex formation to occur between the dye and double-helical DNA. UV–visible, CD, and fluorescence spectra recorded at low DNA concentrations suggest that dye 4 initially binds to the DNA as a high-order aggregate. As the ratio of DNA to dye is increased, the aggregate is converted to monomeric and other low-order dye forms that interact with DNA in a non-intercalative fashion. The brominated dye 4 is relatively unreactive in the dark, but, under 707–759 nm illumination, generates hydroxyl radicals that cleave DNA in high yield (pH 7.0, 22 °C). Dye 4 is also taken up by ES2 ovarian carcinoma cells, where it is non-toxic under dark conditions. Upon irradiation of the ES2 cells at 694 nm, the brominated cyanine reduces cell viability from 100 ± 10% to 14 ± 1%. Our results suggest that 2-quinolinium-based carbocyanine dyes equipped with stabilizing electron withdrawing groups may have the potential to serve as sensitizing agents in long-wavelength phototherapeutic applications.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference58 articles.

1. Recent Development of Chemosensors Based on Cyanine Platforms

2. Fundamentals in the chemistry of cyanine dyes: A review

3. Cyanine dye–nucleic acid interactions;Armitage,2008

4. Cyanine dye–DNA interactions: Intercalation, groove binding, and aggregation;Armitage,2005

5. Spectroscopic study of cyanine dyes interacting with the biopolymer, DNA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3