Design, Synthesis, and Structure–Activity Relationships of Thiazole Analogs as Anticholinesterase Agents for Alzheimer’s Disease

Author:

Sağlık Begüm NurpelinORCID,Osmaniye Derya,Acar Çevik Ulviye,Levent SerkanORCID,Kaya Çavuşoğlu Betül,Özkay YusufORCID,Kaplancıklı Zafer AsımORCID

Abstract

Dementia is a neurological condition commonly correlated with Alzheimer’s disease (AD), and it is seen with many other central nervous system (CNS) disorders. The restricted number of medications is not appropriate to offer enough relief to enhance the quality of life of patients suffering from this symptom; thus, all therapeutic choices should be carefully assessed. In this study, new thiazolylhydrazone derivatives (2a–2l) were designed and synthesized based on the cholinergic hypothesis. Their chemical structures were confirmed by 1H NMR, 13C NMR, and HRMS spectrometric techniques. The ADME (absorption, distribution, metabolism, elimination) parameters of the synthesized compounds were predicted by using QikProp 4.8 software. It was concluded that all compounds presented satisfactory drug-like characteristics. Furthermore, their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro were also tested by modified the Ellman spectrophotometric method. According to the results, all compounds showed a weak inhibitory effect on BChE. On the other hand, most of the compounds (2a, 2b, 2d, 2e, 2g, 2i, and 2j) had a certain AChE inhibitory activity, and the IC50 values of them were calculated as 0.063 ± 0.003, 0.056 ± 0.002, 0.147 ± 0.006, 0.040 ± 0.001, 0.031 ± 0.001, 0.028 ± 0.001, and 0.138 ± 0.005 µM, respectively. Among these derivatives, compound 2i was found to be the most active agent in the series with an IC50 value of 0.028 ± 0.001 µM, which indicated an inhibition profile at a similar rate as the reference drug, donepezil. The potential binding modes of compounds 2a, 2b, 2e, 2g, and 2i with AChE were investigated and compared with each other by the molecular docking studies. The results showed that these compounds were strongly bound up with the AChE enzyme active site with the optimal conformations.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3