Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity

Author:

Negut IrinaORCID,Grumezescu Valentina,Grumezescu Alexandru MihaiORCID,Bîrcă Alexandra Cătălina,Holban Alina Maria,Urzica Iuliana,Avramescu Sorin MariusORCID,Gălățeanu BiancaORCID,Hudiță ArianaORCID

Abstract

Plant extracts are highly valuable pharmaceutical complexes recognized for their biological properties, including antibacterial, antifungal, antiviral, antioxidant, anticancer, and anti-inflammatory properties. However, their use is limited by their low water solubility and physicochemical stability. In order to overcome these limitations, we aimed to develop nanostructured carriers as delivery systems for plant extracts; in particular, we selected the extract of Anthriscus sylvestris (AN) on the basis of its antimicrobial effect and antitumor activity. In this study, AN-extract-functionalized magnetite (Fe3O4@AN) nanoparticles (NPs) were prepared by the co-precipitation method. The purpose of this study was to synthesize and investigate the physicochemical and biological features of composite coatings based on Fe3O4@AN NPs obtained by matrix-assisted pulsed laser evaporation technique. In this respect, laser fluence and drop-casting studies on coatings were performed. The physical and chemical properties of laser-synthesized coatings were investigated by scanning electron microscopy, while Fourier transform infrared spectroscopy comparative analysis was used for determining the chemical structure and functional integrity. Relevant data regarding the presence of magnetic nanoparticles as the only crystalline phase and the size of nanoparticles were obtained by transmission electron microscopy. The in vitro toxicity assessment of the Fe3O4@AN showed significant cytotoxic activity against human adenocarcinoma HT-29 cells after prolonged exposure. Antimicrobial results demonstrated that Fe3O4@AN coatings inhibit microbial colonization and biofilm formation in clinically relevant bacteria species and yeasts. Such coatings are useful, natural, and multifunctional solutions for the development of tailored medical devices and surfaces.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3