Thermogravimetric Analysis and Kinetic Modeling of the AAEM-Catalyzed Pyrolysis of Woody Biomass

Author:

Wang Wei,Lemaire Romain,Bensakhria Ammar,Luart DenisORCID

Abstract

This work analyzes the catalytic effects induced by alkali and alkaline earth metals (AAEMs) on pyrolysis kinetics. To this end, thermogravimetric analyses (TGA) were carried out with raw beech wood and samples impregnated with NaCl, KCl and MgCl2 at four heating rates (5, 10, 15 and 30 °C/min). Obtained results showed that AAEM compounds promote the decomposition of biomass by reducing the initial and peak pyrolysis temperatures. More specifically, the catalytic effect of the alkaline earth metal was shown to be stronger than that of alkali metals. To further interpret the obtained trends, a kinetic modeling of measured data was realized using two isoconversional methods (the Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS) models). With a view to identifying a suitable reaction model, model fitting and master plot methods were considered to be coupled with the isoconversional modeling approaches. The 3-D diffusion reaction model has been identified as being well suited to properly simulate the evolution of the conversion degree of each sample as a function of the temperature. Furthermore, the kinetic parameters derived from the present modeling work highlighted significant decreases of the activation energies when impregnating wood with AAEM chlorides, thus corroborating the existence of catalytic effects shifting the decomposition process to lower temperatures. A survey of the speculated pathways allowing to account for the impact of AAEMs on the thermal degradation of woody biomass is eventually proposed to better interpret the trends identified in this work.

Funder

French Ministry of Higher Education, Research and Innovation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3