Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables

Author:

Song Jiying1,Guo Xinyan1,Chen Haiying1,Tang Yunge1,Han Lei1ORCID

Affiliation:

1. College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China

Abstract

It is interesting and meaningful to explore fluorescent probes for novel rapid detection methods. In this study, we discovered a natural fluorescence probe, bovine serum albumin (BSA), for the assay of ascorbic acid (AA). Due to clusterization-triggered emission (CTE), BSA has the character of clusteroluminescence. AA shows an obvious fluorescence quenching effect on BSA, and the quenching effect increases with increasing concentrations of AA. After optimization, a method for the rapid detection of AA is established by the AA-caused fluorescence quenching effect. The fluorescence quenching effect reaches saturation after 5 min of incubation time and the fluorescence is stable within more than one hour, suggesting a rapid and stable fluorescence response. Moreover, the proposed assay method shows good selectivity and a wide linear range. To further study the mechanisms of AA-caused fluorescence quenching effect, some thermodynamic parameters are calculated. The main intermolecular force between BSA and AA is electrostatic, presumably leading to the inhibiting CTE process of BSA. This method also shows acceptable reliability for the real vegetable sample assay. In summary, this work will not only provide an assay strategy for AA, but also open an avenue for the application expansion of CTE effect of natural biomacromolecules.

Funder

National Natural Science Foundation of China

Distinguished Scholars of Qingdao Agricultural University

Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3