The Role of (H2O)1-2 in the CH2O + ClO Gas-Phase Reaction

Author:

Li Junyao,Tsona Narcisse,Du LinORCID

Abstract

Mechanism and kinetic studies have been carried out to investigate whether one and two water molecules could play a possible catalytic role on the CH2O + ClO reaction. Density functional theory combined with the coupled cluster theory were employed to explore the potential energy surface and the thermodynamics of this radical-molecule reaction. The reaction proceeded through four different paths without water and eleven paths with water, producing H + HCO(O)Cl, Cl + HC(O)OH, HCOO + HCl, and HCO + HOCl. Results indicate that the formation of HCO + HOCl is predominant both in the water-free and water-involved cases. In the absence of water, all the reaction paths proceed through the formation of a transition state, while for some reactions in the presence of water, the products were directly formed via barrierless hydrogen transfer. The rate constant for the formation of HCO + HOCl without water is 2.6 × 10−16 cm3 molecule−1 s−1 at 298.15 K. This rate constant is decreased by 9−12 orders of magnitude in the presence of water. The current calculations hence demonstrate that the CH2O + ClO reaction is impeded by water.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3