Preparation and Performance Evaluation of a Temperature and Salt Resistant Hydrophobic Associative Weak Polymer Gel System

Author:

Zhi Jiqiang12,Liu Yikun12,Chen Jinfeng12,Bo Lifeng12,Qu Guohui12,Jiang Nan3,He Weizhong12

Affiliation:

1. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

2. Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education, Daqing 163318, China

3. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318, China

Abstract

We targeted high-temperature and highly saline old oil fields, whose environmental conditions could be attributed to the significantly high heterogeneity cause by long-term water flooding. The Huabei Oilfield was chosen as the research object. We developed a hydrophobic functional monomer–polymer with temperature and salt resistance by introducing the temperature-resistant and salt-resistant monomer NVP and a hydrophobic functional monomer into the main chain for copolymerization. We used a crosslinking agent with phenolic resin to prepare a weak gel system that showed temperature and salt resistance and investigated its temperature and salt resistance, infective property, plugging performance, liquid flow ability, micropore throat migration, and plugging characteristics. The results obtained using the infrared spectroscopy technique revealed the successful preparation of the phenolic resin crosslinker. The weak gel exhibited good temperature and salt resistance when the polymer concentration was 2000 mg/L, the cohesion ratio was 1:1.5, the additive concentration was 2000 mg/L, the reservoir temperature was 120 °C, and the injected water salinity was 40,300.86 mg/L. The average viscosity retention rate of the 90-day weak gel reached more than 80% and its microstructure was examined. The coreflow experiment results revealed that the weak gel system was characterized by good infectivity. After plugging the weak gel, the effect on the direction of the liquid flow was evident and the flow rate of the low permeability layer increased to a maximum of 48.63% under conditions of varying permeability levels. A significant improvement in the water absorption profile was achieved. The plugging was carried out through a sand-filling pipe under varying permeability conditions and the pressure measuring points in the sand-filling pipe were sucessfully pressurized. The migration ability of the weak gel was good and the blocking rate was >85%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference30 articles.

1. Water shutoff and profile control in China over 60 years;Li;Oil Drill. Prod. Technol.,2019

2. Research Progress of Deep Profile Control Technology and Its Application;Wang;Oilfield Chem.,2020

3. Profile control performance and field application of preformed particle gel in low-permeability fractured reservoir;Xu;J. Pet. Explor. Prod. Technol.,2020

4. Preparation and performance of a novel hydrophobic associating polymer with excellent temperature-resistance and salt-tolerance;Wang;Petrochem. Technol.,2020

5. Preparation and Performance Evaluation of Hydrophobically Associating Polymer with TemperatureResistance and Salt Tolerance;Zhu;Oilfield Chem.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3