Abstract
Approximately 30% or more of the total proteins annotated from sequenced bacteria genomes are annotated as hypothetical or uncharacterized proteins. However, elucidation on the function of these proteins is hindered by the lack of simple and rapid screening methods, particularly with novel or hard-to-transform bacteria. In this report, we employed cell-penetrating peptide (CPP) –peptide nucleotide acid (PNA) conjugates to elucidate the function of such uncharacterized proteins in vivo within the native bacterium. Paenibacillus, a hard-to-transform bacterial genus, was used as a model. Two hypothetical genes showing amino acid sequence similarity to ι-carrageenases, termed cgiA and cgiB, were identified from the draft genome of Paenibacillus sp. strain YYML68, and CPP–PNA probes targeting the mRNA of the acyl carrier protein gene, acpP, and the two ι-carrageenase candidate genes were synthesized. Upon direct incubation of CPP–PNA targeting the mRNA of the acpP gene, we successfully observed growth inhibition of strain YYML68 in a concentration-dependent manner. Similarly, both the function of the candidate ι-carrageenases were also inhibited using our CPP–PNA probes allowing for the confirmation and characterization of these hypothetical proteins. In summary, we believe that CPP–PNA conjugates can serve as a simple and efficient alternative approach to characterize proteins in the native bacterium.
Funder
JSPS KAKENHI
Japan Science and Technology Agency
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献