New Aspects of the Reaction of Thioacetamide and N-Substituted Maleimides

Author:

Aseeva Yulia V.,Stolpovskaya Nadezhda V.,Vandyshev Dmitriy Y.ORCID,Sulimov Vladimir B.,Prezent Mikhail A.,Minyaev Mikhail E.,Shikhaliev Khidmet S.

Abstract

N-Arylmaleimides are universal substrates for the synthesis of various heterocyclic compounds with a wide spectrum of biological activity. However, their reactions with thioacetamides have not been comprehensively studied. We studied the reactions of thioacetamide with N-arylmaleimides under various conditions. We established for the first time that three types of products: epithiopyrrolo[3,4-c]pyridines, pyrrolo[3,4-c]pyridines and 3,3′-thiobis(1-arylpyrrolidine-2,5-diones) can be obtained in different conditions. In all cases, two maleimide molecules are involved in the reaction. 3,3′-Thiobis(1-arylpyrrolidine-2,5-diones) are the major products when the reaction is conducted at boiling in acetic acid. When thioacetamide and N-arylmaleimide are kept in dioxane at 50 °C, epithiopyrrolo[3,4-c]pyridines can be isolated, which, when heated in dioxane, in acetic acid or in methanol in the presence of catalytic amounts of sodium methoxide, are converted into pyrrolo[3,4-c]pyridines by eliminating hydrogen sulfide. The reaction of thioacetamide and N-arylmaleimide in dioxane at boiling temperature with the portioned addition of N-arylmaleimide leads predominantly to the formation of pyrrolo[3,4-c]pyridines. The reaction of thioacetamide with N-alkylmaleimides under all the above conditions leads predominantly to the formation of the corresponding sulfides. The structure of the compounds obtained was characterized by a set of spectral analysis methods and X-ray diffraction (XRD) data.

Funder

The Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3