Development of GBRT Model as a Novel and Robust Mathematical Model to Predict and Optimize the Solubility of Decitabine as an Anti-Cancer Drug

Author:

Abdelbasset Walid KamalORCID,Elsayed Shereen H.,Alshehri SameerORCID,Huwaimel BaderORCID,Alobaida Ahmed,Alsubaiyel Amal M.,Alqahtani Abdulsalam A.ORCID,El Hamd Mohamed A.ORCID,Venkatesan Kumar,AboRas Kareem M.ORCID,Abourehab Mohammed A. S.ORCID

Abstract

The efficient production of solid-dosage oral formulations using eco-friendly supercritical solvents is known as a breakthrough technology towards developing cost-effective therapeutic drugs. Drug solubility is a significant parameter which must be measured before designing the process. Decitabine belongs to the antimetabolite class of chemotherapy agents applied for the treatment of patients with myelodysplastic syndrome (MDS). In recent years, the prediction of drug solubility by applying mathematical models through artificial intelligence (AI) has become known as an interesting topic due to the high cost of experimental investigations. The purpose of this study is to develop various machine-learning-based models to estimate the optimum solubility of the anti-cancer drug decitabine, to evaluate the effects of pressure and temperature on it. To make models on a small dataset in this research, we used three ensemble methods, Random Forest (RFR), Extra Tree (ETR), and Gradient Boosted Regression Trees (GBRT). Different configurations were tested, and optimal hyper-parameters were found. Then, the final models were assessed using standard metrics. RFR, ETR, and GBRT had R2 scores of 0.925, 0.999, and 0.999, respectively. Furthermore, the MAPE metric error rates were 1.423 × 10−1 7.573 × 10−2, and 7.119 × 10−2, respectively. According to these facts, GBRT was considered as the primary model in this paper. Using this method, the optimal amounts are calculated as: P = 380.88 bar, T = 333.01 K, Y = 0.001073.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference40 articles.

1. Emerging clinical pharmacology topics in drug development and precision medicine;Liu,2022

2. Pharmacology of Drugs Used as Stimulants

3. Decitabine

4. Evolution of decitabine development

5. Decitabine in the treatment of myelodysplastic syndromes;Saba;Ther. Clin. Risk Manag.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3