Abstract
The polo-box domain of polo-like kinase 1 (PLK1-PBD) is proved to have crucial roles in cell proliferation. Designing PLK1-PBD inhibitors is challenging due to their poor cellular penetration. In this study, we applied a virtual screening workflow based on a combination of structure-based pharmacophore modeling with molecular docking screening techniques, so as to discover potent PLK1-PBD peptide inhibitors. The resulting 9 virtual screening peptides showed affinities for PLK1-PBD in a competitive binding assay. In particular, peptide 5 exhibited an approximately 100-fold increase in inhibitory activity (IC50 = 70 nM), as compared with the control poloboxtide. Moreover, cell cycle experiments indicated that peptide 5 effectively inhibited the expression of p-Cdc25C and cell cycle regulatory proteins by affecting the function of PLK1-PBD, thereby inducing mitotic arrest at the G2/M phase. Overall, peptide 5 can serve as a potent lead for further investigation as PLK1-PBD inhibitors.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献