Abstract
The high biological potential of polyphenols encourages the search for new natural sources of and biomedical applications for these compounds. Rhododendron luteum Sweet was previously reported to contain pharmaceutically active polyphenols. The present research investigates the polyphenolic fractions in R. luteum leaves, including a determination of the free and bound phenolic acid and flavonoid contents and their anti-inflammatory and antioxidant activities. LC-ESI-MS/MS (liquid chromatography/electrospray ionization triple quadrupole mass spectrometry) analysis revealed a great abundance of free (e.g., 5-O-caffeoylquinic acid, ferulic acid, protocatechuic acid, catechin, and dihydromyricetin) and bound (e.g., caffeic acid, p-coumaric, protocatechuic acid, myricetin, quercetin) phenolics. The R. luteum samples exhibited high anti-inflammatory potential in lipoxygenase (IC50: 0.33 ± 0.01–2.96 ± 0.06 mg dry extract (DE)/mL) and hyaluronidase (IC50: 78.76 ± 2.09 – 429.07 ± 31.08 µg DE/mL) inhibition capacity assays. Some samples also had the ability to inhibit cyclooxygenase 1 (IC50: 311.8 ± 10.95 µg DE/mL) and cyclooxygenase 2 (IC50: 53.40 ± 5.07; 608.09 ± 14.78 µg DE/mL). All fractions showed excellent antioxidant activity in the Oxygen Radical Absorbance Capacity (ORAC) assay (5.76–221.81 g Trolox/g DE), ABTS•+ radical scavenging ability (0.62 ± 0.03 – 5.09 ± 0.23 g Trolox/g DE), and moderate ion (Fe2+) chelating power. This paper expands our knowledge of the phytochemistry and pharmacological activity of R. luteum polyphenols. It reveals, for the first time, the presence of dihydromyricetin, afzelin, and laricitrin in the plant material. It indicates biologically active polyphenolic fractions that should be further investigated or which could be efficiently used in pharmaceutical, cosmetic, or nutraceutical applications.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献