Estimation of the Number of Scans Required per Hard-to-Clean Location and Establishing the Limit of Quantification of a Partial Least Squares Calibration Model When the FTIR Is Used for Pharmaceutical Cleaning Verification

Author:

Sarwar Apu,McSweeney Conor,Smith Mark,Moore EricORCID

Abstract

This study aims to identify two critical components required for pharmaceutical cleaning verification when an FTIR is used: (a) the number of scans required per hard-to-clean location, and (b) the limit of quantification (LOQ) of the FTIR instrument when measuring the surface contamination. The current practice in pharmaceutical manufacturing does not require multiple samples as it is standard practice to collect a single swab sample from a 25 × 25 cm area from a difficult-to-reach area of the manufacturing equipment. However, since the FTIR will only scan a tiny portion of the surface compared to the swab, a sufficient number of samples (data points) are required to provide enough confidence to ensure that the measurement results are close to the true value with a maximum degree of certainty. Similarly, calculating the LOQ for a linear regression could be straightforward. However, complexity arises when the experimental data are complex; in this case, the complexity arises due to the nature of the measurement and the lack of the defined peak in the pre-processed spectra. Therefore, this study uses the practical approach of calculating the sample size and the LOQ.

Funder

Irish Research Council

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference19 articles.

1. Guidance on Aspects of Cleaning Validation in Active Pharmaceutical Ingredient Plant,2016

2. ISPE Baseline® Pharmaceutical Engineering Guide,2010

3. Investigation of an alternative approach for real-time cleaning verification in the pharmaceutical industry

4. Mid-infrared external reflection spectroscopy;Claybourne,2002

5. Infrared Reflection-Absorption Spectrometry and Chemometrics for Quantitative Analysis of Trace Pharmaceuticals on Surfaces;Perston,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3