Protection against Hypoxia-Reoxygenation Injury of Hippocampal Neurons by H2S via Promoting Phosphorylation of ROCK2 at Tyr722 in Rat Model

Author:

Xue MengORCID,Chen Shuo,Xi Jiaojiao,Guan Qianjun,Chen Wei,Guo Yan,Chen Zhiwu

Abstract

The RhoA-ROCK signaling pathway is associated with the protective effects of hydrogen sulfide (H2S) against cerebral ischemia. H2S protects rat hippocampal neurons (RHNs) against hypoxia-reoxygenation (H/R) injury by promoting phosphorylation of RhoA at Ser188. However, effect of H2S on the phosphorylation of ROCK2-related sites is unclear. The present study was designed to investigate whether H2S can play a role in the phosphorylation of ROCK2 at Tyr722, and explore whether this role mediates the protective effect of H/R injury in RHNs. Prokaryotic recombinant plasmids ROCK2wild-pGEX-6P-1 and ROCK2Y722F-pGEX-6P-1 were constructed and transfected into E. coli in vitro, and the expressed protein, GST-ROCK2wild and GST-ROCK2Y722F were used for phosphorylation assay in vitro. Eukaryotic recombinant plasmids ROCK2Y722-pEGFP-N1 and ROCK2Y722F-pEGFP-N1 as well as empty plasmid were transfected into the RHNs. Western blot assay and whole-cell patch-clamp technique were used to detect phosphorylation of ROCK2 at Tyr722 and BKCa channel current in the RHNs, respectively. Cell viability, leakages of intracellular enzymes lactate dehydrogenase (LDH), and nerve-specific enolase (NSE) were measured. The H/R injury was indicated by decrease of cell viability and leakages of intracellular LDH and NSE. The results of Western blot have shown that NaHS, a H2S donor, significantly promoted phosphorylation of GST-ROCK2wild at Tyr722, while no phosphorylation of GST-ROCK2Y722F was detected. The phosphorylation of ROCK2wild promoted by NaHS was also observed in RHNs. NaHS induced more potent effects on protection against H/R injury, phosphorylation of ROCK2 at Tyr722, inhibition of ROCK2 activity, as well as increase of the BKCa current in the ROCK2Y722-pEGFP-N1-transfected RHNs. Our results revealed that H2S protects the RHNs from H/R injury through promoting phosphorylation of ROCK2 at Tyr722 to inhibit ROCK2 activity and potentially by opening channel currents.

Funder

Zhiwu-Chen

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3