Abstract
Novel covalent organic framework (COF) composites containing a bipyridine multimetal complex were designed and obtained via the coordination interaction between bipyridine groups and metal ions. The obtained Pt and polyoxometalate (POM)–loaded COF complex (POM–Pt@COF–TB) exhibited excellent oxidation of methane. In addition, the resultant Co/Fe–based COF composites achieved great performance in an electrocatalytic oxygen evolution reaction (OER). Compared with Co–modified COFs (Co@COF–TB), the optimized bimetallic modified COF composites (Co0.75Fe0.25@COF–TB) exhibited great performance for electrocatalytic OER activity, showing a lower overpotential of 331 mV at 10 mA cm−2. Meanwhile, Co0.75Fe0.25@COF–TB also possessed a great turnover frequency (TOF) value (0.119 s−1) at the overpotential of 330 mV, which exhibited high efficiency in the utilization of metal atoms and was better than that of many reported COF-based OER electrocatalysts. This work provides a new perspective for the future coordination of COFs with bimetallic or polymetallic ions, and broadens the application of COFs in methane conversion and electrocatalytic oxygen evolution.
Funder
National Natural Science Foundation of China
Science and Technology Project of Guizhou Province
Hainan Natural Science Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献