Carbon Nanomaterials with SOD-like Activity: The Effect of the Ionic Strength

Author:

Veloso Andreia D.1ORCID,Videira Romeu A.2ORCID,Oliveira Maria C.1

Affiliation:

1. Centro de Química-Vila Real (CQ-VR) and Chemistry Department, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

2. REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

Abstract

Electrogenerated hydrophilic carbon (EHC) nanomaterials emerge as a highly attractive option for mimicking the activity of the superoxide dismutase enzyme (SOD) due to their exceptional water solubility and electron-transfer reversibility. Motivated by these properties, the EHC nanomaterials were utilized to assess the effect of ionic strength on the SOD-like activity. Superoxide anion radicals (O2•−) were generated using the hypoxanthine–xanthine oxidase system, with nitro blue tetrazolium chloride serving as the detecting system. A significant boost in the SOD-like activity was found via the addition of an electrolyte to the as-prepared nanomaterial solution. The effect of the electrolyte cation (Na+ and K+), as well as its counterion (Cl−, CH3COO−, and H2PO4−/HPO42−) were analyzed. Based on these studies, a new formulation for the preparation of the carbon-based nanomaterial was established. It was demonstrated that the SOD-like activity follows an enzyme-type catalytic activity rather than the stoichiometric scavenging of the superoxide anion radical. It was concluded that 12.71 µg/mL of the EHC nanomaterial exhibits catalytic activity comparable to 15.46 µg/mL of the native Cu/Zn-SOD enzyme. This study provides a starting point for the development of a new nanotool to fight the oxidative stress associated with pathophysiological conditions where SOD activity is depleted.

Funder

FCT

Scientific Employment Stimulus—Institutional Call

FCT, MCTES, ESF, and EU through the individual research PhD for the PhD scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3