Salvianolic Acid B Strikes Back: New Evidence in the Modulation of Expression and Activity of Matrix Metalloproteinase 9 in MDA-MB-231 Human Breast Cancer Cells

Author:

Ianni AndreaORCID,Ruggeri Pierdomenico,Bellio PierangeloORCID,Martino Francesco,Celenza Giuseppe,Martino GiuseppeORCID,Franceschini Nicola

Abstract

Salvianolic acid B (SalB) is a bioactive compound from Salviae miltiorrhizae, one of the most important traditional herbal medicines widely used in several countries for the treatment of cardiovascular diseases. The aim of this study was to evaluate the in vitro effect of SalB on the expression and the activity of matrix metalloproteinase 9 (MMP-9), a zinc-dependent proteolytic enzyme, in human MDA-MB-231 breast cancer cells. This cellular model is characterized by a marked invasive phenotype, supported by a high constitutive expression of MMPs, especially gelatinases. SalB was first of all evaluated by in silico approaches primarily aimed at predicting the main pharmacokinetic parameters. The most favorable interaction between the natural compound and MMP-9 was instead tested by molecular docking analysis that was subsequently verified by an enzymatic inhibition assay. MDA-MB-231 cells were treated with SalB 5 µM and 50 µM for 24 h and 48 h. The conditioned media obtained from treated cells were then analyzed by gelatin zymography and reverse zymography to, respectively, evaluate the MMP-9 activity and the presence of TIMP-1. The expression of the enzyme was then evaluated by Western blot on conditioned media and by analysis of transcripts through reverse transcriptase-polymerase chain reaction (RT-PCR). The in silico approach showed the ability of SalB to interact with the catalytic zinc ion of the enzyme, with a plausible competitive mode of action. The analysis of conditioned culture media showed a reduction in MMP-9 activity and the concomitant decrease in the enzyme concentration, partially confirmed by analysis of transcripts. SalB showed the ability to modulate the function of MMP-9 in MDA-MB-231 cells. To our knowledge, this is the first time in which the role of SalB on MMP-9 in a highly invasive cellular model is investigated. The obtained results impose further and more specific evaluations in order to obtain a better understanding of the biochemical mechanisms that regulate the interaction between this natural compound and the MMP-9.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference37 articles.

1. Structure and function of matrix metalloproteinases and TIMPs;Nagase;Cardiovasc. Res.,2006

2. Tissue inhibitors of metalloproteinases: Evolution, structure and function;Brew;Biochim. et Biophys. Acta (BBA) Protein Struct. Mol. Enzym.,2000

3. Physiology and pathophysiology of matrix metalloproteases;Klein;Amino Acids,2011

4. Matrix metalloproteinases in tumor invasion and metastasis;Stamenkovic;Semin. Cancer Biol.,2000

5. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis;Merdad;Anticancer. Res.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3