Dual Drug-Loaded Nanoliposomes Encapsulating Curcumin and 5-Fluorouracil with Advanced Medicinal Applications: Self-Monitoring and Antitumor Therapy

Author:

Liu Yu-Shi12,Song Jia-Wen12,Zhong Wen-Xiao12,Yuan Ming-Hao12,Guo Yu-Rou12,Peng Cheng1,Guo Li12ORCID,Guo Yi-Ping12ORCID

Affiliation:

1. State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

2. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

Abstract

Due to the presence of physiological barriers, it is difficult to achieve the desired therapeutic efficacy of drugs; thus, it is necessary to develop an efficient drug delivery system that enables advanced functions such as self-monitoring. Curcumin (CUR) is a naturally functional polyphenol whose effectiveness is limited by poor solubility and low bioavailability, and its natural fluorescent properties are often overlooked. Therefore, we aimed to improve the antitumor activity and drug uptake monitoring by simultaneously delivering CUR and 5-Fluorouracil (5-FU) in the form of liposomes. In this study, dual drug-loaded liposomes (FC–DP–Lip) encapsulating CUR and 5-FU were prepared by the thin-film hydration method; their physicochemical properties were characterized; and their biosafety, drug uptake distribution in vivo, and tumor cell toxicity were evaluated. The results showed that the nanoliposome FC–DP–Lip showed good morphology, stability, and drug encapsulation efficiency. It showed good biocompatibility, with no side effects on zebrafish embryonic development. In vivo uptake in zebrafish showed that FC–DP–Lip has a long circulation time and presents gastrointestinal accumulation. In addition, FC–DP–Lip was cytotoxic against a variety of cancer cells. This work showed that FC–DP–Lip nanoliposomes can enhance the toxicity of 5-FU to cancer cells, demonstrating safety and efficiency, and enabling real-time self-monitoring functions.

Funder

State Key Project for Joint Region Innovation Development Schemes, the National Natural Science Foundation of China

Xinglin Scholars Discipline Talent Research Promotion Plan

Xinglin Scholar Research Promotion Project of Chengdu University of TCM

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Role of Curcumin in Cancer: A Long Road Ahead;Interdisciplinary Cancer Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3