Affiliation:
1. Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
2. Department of Chemistry, The University of Akron, Akron, OH 44325, USA
3. Advanced and Energy Materials Department, Savannah River National Laboratory, Aiken, SC 29808, USA
Abstract
Desalination is considered a promising solution to alleviate water shortages, yet current methods are often restricted, due to challenges like high energy consumption, significant cost, or limited desalination capacity. In this study, we present a novel approach of redox flow desalination (RFD) utilizing the highly aqueous-soluble and reversible redox-active compound, potassium 1,1′-bis(sulfonate) ferrocene (1,1′-FcDS). This water-soluble organic compound yielded stable and rapid desalination, sustaining extended operation without notable decay and achieving an impressive desalination rate of up to 457.5 mmol·h−1·m−2 and energy consumption as low as 40.2 kJ·molNaCl−1. Specifically, the RFD device effectively desalinated a 50 mM NaCl solution to potable standards within 6000 s using 1,1′-FcDS. It maintained an average energy consumption of 178.16 kJ·molNaCl−1 and exhibited negligible deterioration in desalination rate, energy efficiency, and charge efficiency throughout a rigorous 12,000 s cycling test. Furthermore, the versatility of this method was demonstrated by effectively treating saline water with varying initial concentrations from 10 mM to 50 mM, showcasing its potential across a broad spectrum of applications.
Funder
University of Akron and the University of South Carolina