Effect of AuNPs and AgNPs on the Antioxidant System and Antioxidant Activity of Lavender (Lavandula angustifolia Mill.) from In Vitro Cultures

Author:

Jadczak Paula,Kulpa DanutaORCID,Drozd RadosławORCID,Przewodowski WłodzimierzORCID,Przewodowska AgnieszkaORCID

Abstract

The aim of this study was to determine the effect of gold and silver nanoparticles on the activity of antioxidant enzymes (ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (POX), and catalase (CAT)), the free radical scavenging capacity, and the total polyphenol capacity of lavender (Lavandula angustifolia Mill.) cultivar “Munstead” propagated in vitro. In the experiment, fragments of lavender plants were cultivated in vitro on medium with the addition of 1, 2, 5, 10, 20, and 50 mg∙dm−3 of AgNPs or AuNPs (particle sizes 24.2 ± 2.4 and 27.5 ± 4.8 nm, respectively). It was found that the nanoparticles increase the activity of the antioxidant enzymes APX and SOD; however, the reaction depends on the NP concentration. The highest APX activity is found in plants propagated on media with 2 and 5 mg∙dm−3 of AgNPs. AuNPs significantly increase the APX activity when added to media with a concentration of 10 mg∙dm−3. The highest SOD activity is recorded at 2 and 5 mg∙dm−3 AgNP and AuNP concentrations. The addition of higher concentrations of nanoparticles to culture media results in a decrease in the APX and SOD activity. The addition of AuNPs to culture media at concentrations from 2 to 50 mg∙dm−3 increases the POX activity in comparison to its activity when AgNPs are added to the culture media. No significant influence of NPs on the increase in CAT activity was demonstrated. AgNPs and AuNPs increased the free radical scavenging capacity (ABTS•+). The addition of NPs at concentrations of 2 and 5 mg∙dm−3 increased the production of polyphenols; however, in lower concentrations it decreased their content in lavender tissues.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3