Assessing the Influence of Electrode Polarity on the Treatment of Poultry Slaughterhouse Wastewater

Author:

Meiramkulova KulyashORCID,Bazarbayeva Tursynkul,Orynbassar Raigul,Tleukulov Almas,Madina Nabiollina,Mashan Togzhan,Dariya AkubayevaORCID,Apendina Ainagul,Nurmukhanbetova Nurgul

Abstract

Electrochemical methods have been increasingly gaining popularity in the field of wastewater treatment. However, the performance of these methods can be highly affected by the polarity direction as determined by the electrodes arrangement (anode to cathode or cathode to anode); as well as the characteristics of the wastewater to be treated as determined by the type of wastewater. The presented research work investigated the relationship between polarity direction and the removal of pollutants from poultry slaughterhouse wastewater using titanium and aluminium electrode materials. In the first case, the wastewater was exposed to the Ti (anode)-Al (cathode) combination, whereas in the second case the wastewater was subjected to the Al (anode)-Ti (cathode) arrangement. The two cases were designed to see if the polarity direction of the chosen electrode materials affected the removal of pollutants. The removal efficiencies were computed as a ratio of the remaining concentration in the treated effluent to the concentration before treatment. It was observed that the production processes generate highly fluctuating wastewater in terms of pollution loading; for instance, 422 to 5340 Pt-Co (minimum to maximum) were recorded from color, 126 to 2264 mg/L were recorded from total dissolved solids, and 358 to 5998 mg/L from chemical oxygen demand. Also, the research results after 40 min of retention time showed that both electrode arrangements achieved relatively high removal efficiencies; Whereby, the aluminium to titanium polarity achieved up to 100% removal efficiency from turbidity while the titanium to aluminium polarity achieved a maximum of 99.95% removal efficiency from turbidty. Also, a similar phenomenon was observed from total dissolved solids; whereby, on average 0 mg/L was achieved when the wastewater was purified using the aluminium to titanium arrangement, while on average 2 mg/L was achieved from the titanium to aluminium arrangement. A little higher removal efficiency discrepancy was observed from ammonia; whereby, the aluminium to titanium arrangement outperformed the titanium to aluminium arrangement with average removal efficiencies of 82.27% and 64.11%, respectively.

Funder

Ministry of Education and Science, the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3