Novel Hyperspectral Analysis of Thin-Layer Chromatographic Plates—An Application to Fingerprinting of 70 Polish Grasses

Author:

Wróbel-Szkolak Joanna1,Cwener Anna23,Komsta Łukasz1ORCID

Affiliation:

1. Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland

2. Department of Pharmaceutical Botany, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland

3. Botanical Garden of Maria Curie-Skłodowska University in Lublin, 3 Sławinkowska Street, 20-810 Lublin, Poland

Abstract

The advantages of hyperspectral imaging in videodensitometry are presented and discussed with the example of extracts from 70 Polish grasses. An inexpensive microscope camera was modified to cover the infrared spectrum range, and then 11 combinations of illumination (254 nm, 366 nm, white light), together with various filters (no filter, IRCut, UV, cobalt glass, IR pass), were used to register RGB HDR images of the same plate. It was revealed that the resulting 33 channels of information could be compressed into 5–6 principal components and then visualized separately as grayscale images. We also propose a new approach called principal component artificial coloring of images (PCACI). It allows easy classification of chromatographic spots by presenting three PC components as RGB channels, providing vivid spots with artificial colors and visualizing six principal components on two color images. The infrared region brings additional information to the registered data, orthogonal to the other channels and not redundant with photos in the visible region. This is the first published attempt to use a hyperspectral camera in TLC and it can be clearly concluded that such an approach deserves routine use and further attention.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3