Exploration of the Dynamic Variations of the Characteristic Constituents and the Degradation Products of Catalpol during the Process of Radix Rehmanniae

Author:

Yang Jingjing1,Zhang Lihua1,Zhang Mengyue1,Yang Mingxuan1,Zou Lin1,Cui Ying1,Yang Jing1,Chai Xin12,Wang Yuefei12

Affiliation:

1. National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

2. Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China

Abstract

Radix Rehmanniae (RR), a famous traditional Chinese medicine (TCM) widely employed in nourishing Yin and invigorating the kidney, has three common processing forms in clinical practice, including fresh Radix Rehmanniae (FRR), raw Radix Rehmanniae (RRR), and processed Radix Rehmanniae (PRR). However, until now, there has been less exploration of the dynamic variations in the characteristic constituents and degradation products of catalpol as a representative iridoid glycoside with the highest content in RR during the process from FRR to PRR. In this study, an ultra-performance liquid chromatography coupled with photodiode array detector (UPLC-PDA) method was successfully established for the simultaneous determination of ten characteristic components to explore their dynamic variations in different processed products of RR. Among them, iridoid glycosides, especially catalpol, exhibited a sharp decrease from RRR to PRR. Then, three degradation products of catalpol were detected under simulated processing conditions (100 °C, pH 4.8 acetate buffer solution), which were isolated and identified as jiofuraldehyde, cataldehyde, and norviburtinal, respectively. Cataldehyde was first reported as a new compound. Moreover, the specificity of norviburtinal in self-made PRR samples was discovered and validated, which was further confirmed by testing in commercially available PRR samples. In conclusion, our study revealed the decrease in iridoid glycosides and the production of new degradation substances during the process from FRR to PRR, which is critical for unveiling the processing mechanism of RR.

Funder

the Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine

the Science and Technology Program of Tianjin

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3