Mechanistic Insights into the Ameliorative Effect of Cichoriin on Diabetic Rats—Assisted with an In Silico Approach

Author:

Khalil Hany EzzatORCID,Abdelwahab Miada F.ORCID,Ibrahim Hairul-Islam MohamedORCID,AlYahya Khalid A.ORCID,Mohamed Ahmed Adel,Radwan Amira Samir,Waz ShaimaaORCID

Abstract

Type 2 diabetes mellitus is considered to be a substantial socioeconomic burden worldwide on both patients and governments. Coumarins are biomolecules with a diversity of biological activities. The current investigation aimed to explore the ameliorative effects of cichoriin, which is a type of coumarin, on high-fat diet/streptozotocin (HFD/STZ)-induced diabetic rats. Methods: Rats were allocated into five groups. Group I was considered as the control group, while the other groups were HFD/STZ-induced diabetic rats. Group II was assigned as the diabetic control. Groups III and IV were treated with cichoriin (50 or 100 mg/kg, respectively). Group V received glibenclamide (5 mg/kg) (as a positive control). The blood glucose (BG), serum insulin, triglycerides (TG), total cholesterol (TC), total antioxidant capacity (TAC), catalase, hepatic superoxide dismutase (SOD) and content of malondialdehyde (MDA) were assessed. Histopathological and immunohistochemistry analysis of pancreatic tissue were performed. mRNA and protein expressions of GLUT4, AMPK, and PI3K were estimated. Results: Cichoriin treatment ameliorated HFD/STZ-induced diabetic conditions and mitigated the histopathological characteristics of the pancreas, as well as increasing pancreatic insulin expression. This decreased the levels of BG, TG, TC, and MDA and improved the TAC, catalase and SOD contents. Cichoriin demonstrated upregulation of mRNA and protein expressions of GLUT4, AMPK, and PI3K. The in silico binding of cichoriin with GLUT4, AMPK, and PI3K supported the possible current activities. Conclusion: Collectively, this work highlighted the potential role of cichoriin in mitigating HFD/STZ-induced diabetic conditions and showed it to be a valuable product.

Funder

the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3