Affiliation:
1. College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
Abstract
Li3V2(PO4)3 (LVP) is one of the candidates for high-energy-density cathode materials matching lithium metal batteries due to its high operating voltage and theoretical capacity. However, the inevitable side reactions of LVP with a traditional liquid-state electrolyte under high voltage, as well as the uncontrollable growth of lithium dendrites, worsen the cycling performance. Herein, a hybrid solid-state electrolyte is prepared by the confinement of a lithium-containing ionic liquid with a mesoporous SiO2 scaffold, and used for a LVP-cathode-based lithium metal battery. The solid-state electrolyte not only exhibits a high ionic conductivity of 3.14 × 10−4 S cm−1 at 30 °C and a wide electrochemical window of about 5 V, but also has good compatibility with the LVP cathode material. Moreover, the cell paired with a solid-state electrolyte exhibits good reversibility and can realize a stable operation at a voltage of up to 4.8 V, and the discharge capacity is well-maintained after 100 cycles, which demonstrates excellent capacity retention. As a contrast, the cell paired with a conventional liquid-state electrolyte shows only an 87.6% discharge capacity retention after 100 cycles. In addition, the effectiveness of a hybrid solid-state electrolyte in suppressing dendritic lithium is demonstrated. The work presents a possible choice for the use of a hybrid solid-state electrolyte compatible with high-performance cathode materials in lithium metal batteries.
Funder
Key Research and Development Program of Yichun City
Science and Technology Research Project of Jiangxi Provincial Department of Education
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献