Comparing the Colloidal Stabilities of Commercial and Biogenic Iron Oxide Nanoparticles That Have Potential In Vitro/In Vivo Applications

Author:

Schwan Jonas1,Markert Simon2ORCID,Rosenfeldt Sabine34,Schüler Dirk2ORCID,Mickoleit Frank2ORCID,Schenk Anna S.14ORCID

Affiliation:

1. Physical Chemistry IV, University of Bayreuth, D-95447 Bayreuth, Germany

2. Department Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany

3. Physical Chemistry I, University of Bayreuth, D-95447 Bayreuth, Germany

4. Bavarian Polymer Institute (BPI), University of Bayreuth, D-95447 Bayreuth, Germany

Abstract

For the potential in vitro/in vivo applications of magnetic iron oxide nanoparticles, their stability in different physiological fluids has to be ensured. This important prerequisite includes the preservation of the particles’ stability during the envisaged application and, consequently, their invariance with respect to the transfer from storage conditions to cell culture media or even bodily fluids. Here, we investigate the colloidal stabilities of commercial nanoparticles with different coatings as a model system for biogenic iron oxide nanoparticles (magnetosomes) isolated from magnetotactic bacteria. We demonstrate that the stability can be evaluated and quantified by determining the intensity-weighted average of the particle sizes (Z-value) obtained from dynamic light scattering experiments as a simple quality criterion, which can also be used as an indicator for protein corona formation.

Funder

European Research Council

Federal Ministry of Education and Research

Bavarian Academy of Sciences and Humanities

Studienstiftung des Deutschen Volkes as well as the Elite Study Program “Macromolecular Science”

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3