Affiliation:
1. School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
Abstract
To investigate the control mechanisms of NOx precursors and the synergistic effects of composite catalysts during proline pyrolysis, a systematic series of experiments was conducted utilizing composite catalysts with varying Fe-Ca ratios. Product distribution analysis was employed to elucidate the catalysts’ mechanisms in reducing NOx precursor emissions. The synergistic interactions between Fe and Ca were quantitatively assessed through comparative theoretical and experimental release calculations. The results indicate that an increase in the Fe content in the catalyst led to a rise in amine concentrations from 0.9% to 2.95%, implying that Fe facilitates the generation of amine-N through ring-opening and substitution reactions. When the Fe to Ca ratio was balanced at 1:1, nitrogen predominantly participated in the formation of purines via cyclization and substitution reactions. Additionally, all composite catalysts exhibited a suppressive effect on the release of NOx precursors, attributed to their significant enhancement of solid product retention. Fe-Ca composite catalyst synergistically inhibits the release of gaseous nitrogen. Notably, the strongest synergistic effect was observed with a 1:3 Fe to Ca ratio, which reduced the release of NH3 by 38.7% and HCN by 53.6% during proline pyrolysis. This study offers valuable insights into the control of NOx precursors and the optimization of nitrogen-rich biomass pyrolysis processes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Excellent Youth Project of Education Department of Hunan Province
Postgraduate Research Innovation Project of Changsha University of Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献