Solubility and Pharmacokinetic Profile Improvement of Griseofulvin through Supercritical Carbon Dioxide-Assisted Complexation with HP-γ-Cyclodextrin

Author:

Ding Yili1234,Cui Wutong5,Zhang Zhiyuan5,Ma Yanzhi5,Ding Charles6,Lin Yikai5,Xu Zhe1

Affiliation:

1. College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China

2. Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China

3. Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China

4. Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ 07083, USA

5. Life Science Department, Foshan University, Foshan 528231, China

6. Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089-1149, USA

Abstract

Since griseofulvin was marketed as a non-polyene antifungal antibiotic drug in 1958, its poor water solubility has been an issue for its wide applications, and over the last sixty years, many attempts have been made to increase its water solubility; however, a significant result has yet to be achieved. Through supercritical carbon dioxide-assisted cyclodextrin complexation with the addition of a trace amount of water-soluble polymer surfactant, the griseofulvin inclusion complex with HP-γ-cyclodextrin was prepared and confirmed. The 1:2 ratio of griseofulvin and HP-γ-cyclodextrin in the complex was determined based on its NMR study. After complexation with HP-γ-cyclodextrin, griseofulvin’s water solubility was increased 477 times compared with that of griseofulvin alone, which is the best result thus far. The complex showed 90% of griseofulvin release in vitro in 10 min, in an in vivo dog pharmacokinetic study; the Cmax was increased from 0.52 µg/mL to 0.72 µg/mL, AUC0–12 was increased from 1.55 μg·h/mL to 2.75 μg·h/mL, the clearance was changed from 51.78 L/kg/h to 24.16 L/kg/h, and the half-life time was changed from 0.81 h to 1.56 h, indicating the obtained griseofulvin complex can be a more effective drug than griseofulvin alone.

Funder

Innovation and Entrepreneurship Team Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3