Abstract
Energy profiles of seven halogen-bonded complexes were analysed with the topological energy partitioning called Interacting Quantum Atoms (IQA) at MP4(SDQ)/6–31 + G(2d,2p) level of theory. Explicit interatomic electron correlation energies are included in the analysis. Four complexes combine X2 (X = Cl or F) with HCN or NH3, while the remaining three combine ClF with HCN, NH3 or N2. Each complex was systematically deformed by translating the constituent molecules along its central axis linking X and N, and reoptimising its remaining geometry. The Relative Energy Gradient (REG) method (Theor. Chem. Acc. 2017, 136, 86) then computes which IQA energies most correlate with the total energy during the process of complex formation and further compression beyond the respective equilibrium geometries. It turns out that the covalent energy (i.e., exchange) of the halogen bond, X…N, itself drives the complex formation. When the complexes are compressed from their equilibrium to shorter X…N distance then the intra-atomic energy of N is in charge. When the REG analysis is restricted to electron correlation then the interatomic correlation energy between X and N again drives the complex formation, and the complex compression is best described by the destabilisation of the through-space correlation energy between N and the “outer” halogen.
Funder
Engineering and Physical Sciences Research Council
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference65 articles.
1. The halogen bond: Nature and applications
2. Following halogen bonds formation with bader’s atoms-in-molecules theory;Tognetti,2016
3. Halogen bond: A long overlooked interaction;Cavallo,2015
4. The Halogen Bond
5. Definition of the halogen bond (IUPAC Recommendations 2013)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献