Analysis of Dielectric Parameters of Fe2O3-Doped Polyvinylidene Fluoride/Poly(methyl methacrylate) Blend Composites

Author:

Bafna Minal1,Deeba Farah23,Gupta Ankit K.1,Shrivastava Kriti4,Kulshrestha Vaibhav5,Jain Ankur46ORCID

Affiliation:

1. Department of Physics, Agrawal P. G. College, Jaipur 302003, India

2. Department of Physics, S. S. Jain Subodh P. G. College, Jaipur 302004, India

3. School of Applied Sciences, Suresh GyanVihar University, Jaipur 302017, India

4. Center for Renewable Energy and Storage, Suresh GyanVihar University, Jaipur 302017, India

5. CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India

6. Natural Science Centre for Basic Research & Development, Hiroshima University, Higashihiroshima 739-8530, Japan

Abstract

In this paper, we report the effect of metal oxide (Fe2O3) loading in different weight ratios (0.5%, 1%, 2%, and 4%) on the structural and electrical parameters, viz., the complex dielectric constant, electric modulus spectra, and the AC conductivity, of polymeric composites of PVDF/PMMA (30/70 weight ratio) blend. The structural and geometric measurements have been analyzed with the help of peak location, peak intensity, and peak shape obtained from XRD as well as from FTIR spectra. The electrical properties have been investigated using an impedance analyzer in the frequency range 100 Hz to 1 MHz. The real parts of the complex permittivity and the dielectric loss tangent of these materials are found to be frequency independent in the range from 20 KHz to 1 MHz, but they increase with the increase in the concentration of nano-Fe2O3. The conductivity also increases with an increased loading of Fe2O3 in PVDF/PMMA polymer blends. The electric modulus spectra were used to analyze the relaxation processes associated with the Maxwell–Wagner–Sillars mechanism and chain segmental motion in the polymer mix.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3