Dynamic Interfacial Tensions of Surfactant and Polymer Solutions Related to High-Temperature and High-Salinity Reservoir

Author:

Cui Xiang-Long1,Pan Yi1,Hu Fu-Tang2,Han Lu3,Zhu Xiu-Yu2,Zhang Lei4,Zhou Zhao-Hui3,Li Gen5,Ma Gui-Yang1,Zhang Lu4ORCID

Affiliation:

1. College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China

2. Research Institute of Drilling and Production Technology, PetroChina Qinghai Oilfield Company, Dunhuang 736202, China

3. State Key Laboratory of Enhanced Oil Recovery (PetroChina Research Institute of Petroleum Exploration & Development), Beijing 100083, China

4. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

5. Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

Abstract

Betaine is a new surfactant with good application prospects in high-temperature and high-salinity reservoirs. The interfacial properties of two kinds of betaine mixtures with a good synergistic effect were evaluated in this paper. On this basis, the effects of temperature-resistant, salt-resistant polymers with different contents of 2-acrylamide-2-methylpropanesulfonic acid (AMPS) on dynamic interfacial tensions (IFTs) against n-alkanes and crude oil were studied. The experimental results show that the IFTs between betaine ASB and n-alkanes can be reduced to ultra-low values by compounding with anionic surfactant petroleum sulfonate (PS) and extended anionic surfactant alkoxyethylene carboxylate (AEC), respectively. ASB@AEC is very oil-soluble with nmin value ≥14, and ASB@PS is relatively water-soluble with nmin value of 10. The water solubility of both ASB@PS and ASB@AEC is enhanced by the addition of water-soluble polymers. The HLB of the ASB@AEC solution becomes better against crude oil after the addition of polymers, and the IFT decreases to an ultra-low value as a result. On the contrary, the antagonistic effect in reducing the IFT can be observed for ASB@PS in the same case. In a word, polymers affect the IFTs of surfactant solutions by regulating the HLB.

Funder

Open Fund of State Key Laboratory of Enhanced Oil Recovery

Scientific Research and Technology Development Projects of Petrochina

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3