In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry

Author:

Hong Chao,Yang Ping,Li Shuping,Guo Yizhen,Wang Dan,Wang Jianxin

Abstract

Background: Ginsenoside Rg5 has been proved to have a wide range of pharmacological activities. However, the in vitro and in vivo metabolism pathways of ginsenosides are still unclear, which impedes the understanding of their in vivo fate. In this paper, the possible metabolic process of Rg5 was studied and the metabolites are identified. Methods: Samples from rat liver microsomes (RLMs) in vitro and from rat urine, plasma and feces in vivo were collected for analysis after oral administration of Rg5. A rapid analysis technique using ultra-performance liquid chromatography (UPLC)/quadrupole-time-of-flight mass spectrometry (QTOF-MS) was applied for detecting metabolites of Rg5 both in vitro and in vivo. Results: A feasible metabolic pathway was proposed and described for ginsenoside Rg5. A total of 17 metabolic products were detected in biological samples, including the RLMs (four), rat urine (two), feces (13) and plasma (four). Fifteen of them have never been reported before. Oxidation, deglycosylation, deoxidation, glucuronidation, demethylation and dehydration were found to be the major metabolic reactions of Rg5. Conclusions: The present study utilized a reliable and quick analytical tool to explore the metabolism of Rg5 in rats and provided significant insights into the understanding of the metabolic pathways of Rg5 in vitro and in vivo. The results could be used to not only evaluate the efficacy and safety of Rg5, but also identify potential active drug candidates from the metabolites.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3