Abstract
In an attempt to isolate boron-containing tri-niobium polychalcogenide species, we have carried out prolonged thermolysis reactions of [Cp*NbCl4] (Cp* = ɳ5-C5Me5) with four equivalents of Li[BH2E3] (E = Se or S). In the case of the heavier chalcogen (Se), the reaction led to the isolation of the tri-niobium cubane-like cluster [(NbCp*)3(μ3-Se)3(BH)(μ-Se)3] (1) and the homocubane-like cluster [(NbCp*)3(μ3-Se)3(μ-Se)3(BH)(μ-Se)] (2). Interestingly, the tri-niobium framework of 1 stabilizes a selenaborate {Se3BH}− ligand. A selenium atom is further introduced between boron and one of the selenium atoms of 1 to yield cluster 2. On the other hand, the reaction with the sulfur-containing borate adduct [LiBH2S3] afforded the trimetallic clusters [(NbCp*)3(μ-S)4{μ-S2(BH)}] (3) and [(NbCp*)3(μ-S)4{μ-S2(S)}] (4). Both clusters 3 and 4 have an Nb3S6 core, which further stabilizes {BH} and mono-sulfur units, respectively, through bi-chalcogen coordination. All of these species were characterized by 11B{1H}, 1H, and 13C{1H} NMR spectroscopy, mass spectrometry, infrared (IR) spectroscopy, and single-crystal X-ray crystallography. Moreover, theoretical investigations revealed that the triangular Nb3 framework is aromatic in nature and plays a vital role in the stabilization of the borate, borane, and chalcogen units.
Funder
SERB
Centre of Excellence on Molecular Materials
Institution of Eminence scheme of IIT Madras
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献