Comparative Study of Different Measurement Methods for Characterizing Rheological Properties of Lubrication Layer

Author:

Liu Yu,Jing Rui,Yan Peiyu

Abstract

The lubrication layer plays a governing role in predicting the pumpability of fresh concrete. To determine the effect of measurement methods on the characterization of the rheological properties of the lubrication layer, different measurement systems, including Sliper, tribometer, and the utilization of a mortar rheometer, were employed. The rheological properties and workability of bulk concrete were measured in parallel to investigate the correlation between them and the rheological properties of the lubrication layer. The results show that the measured values of the rheological parameters of the lubrication layer differ due to the systematic deviation between different measurement methods. The results obtained by both tribometer and mortar rheometer were well-correlated, having a linear relationship with the rheological parameters of bulk concrete. The correlation coefficient between results gained with Sliper and rheological parameters of concrete or lubrication layer determined with other methods was not high enough. Addition friction led to the large accidental error and overestimated yield stress obtained with Sliper. The workability of concrete is only suitable for characterizing the rheological properties of bulk concrete.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3