Abstract
Biobased lignin represents one of the possible materials for next-generation flame retardant additives due to its sustainability, environmental benefits and comparable efficiency to other flame retardant (FR) additives. In this context, this study presents the development of FR polyamide 11 (PA11) multifilament yarns and fabric structures containing different industrial lignins (i.e., lignosulfonate lignin (LL), and Kraft lignin (KL)) and zinc phosphinate (ZnP). The combination of ZnP and lignin (KL or LL) at different weight ratios were used to prepare flame retarded PA11 blends by melt mixing using a twin-screw extruder. These blends were transformed into continuous multifilament yarns by the melt-spinning process even at a high concentration of additives as 20 wt%. The mechanical test results showed that the combination of KL and ZnP achieved higher strength and filaments showed regularity in structure as compared to the LL and ZnP filaments. Thermogravimetric (TG) analysis showed the incorporation of lignin induces the initial decomposition (T5%) at a lower temperature; at the same time, maximum decomposition (Tmax) shifts to a higher temperature region and a higher amount of char residue is reported at the end of the test. Further, the TGA-FTIR study revealed that the ternary blends (i.e., the combination of LL or KL, ZnP, and PA11) released mainly the phosphinate compound, hydrocarbon species, and a small amount of phosphinic acid during the initial decomposition stage (T5%), while hydrocarbons, carbonyls, and phenolic compounds along with CO2 are released during main decomposition stage (Tmax). The analysis of decomposition products suggests the stronger bonds formation in the condensed phase and the obtainment of a stable char layer. Cone calorimetry exploited to study the fire behavior on sheet samples (polymer bulk) showed an improvement in flame retardant properties with increasing lignin content in blends and most enhanced results were found when 10 wt% of LL and ZnP were combined such as a reduction in heat release rate (HRR) up to 64% and total heat release (THR) up to 22%. Besides, tests carried out on knitted fabric structure showed less influence on HRR and THR but the noticeable effect on postponing the time to ignition (TTI) and reduction in the maximum average rate of heat emission (MARHE) value during combustion.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献