Abstract
The new series of 3-(2-chlorophenyl)- and 3-(3-chlorophenyl)-pyrrolidine-2,5-dione-acetamide derivatives as potential anticonvulsant and analgesic agents was synthesized. The compounds obtained were evaluated in the following acute models of epilepsy: maximal electroshock (MES), psychomotor (6 Hz, 32 mA), and subcutaneous pentylenetetrazole (scPTZ) seizure tests. The most active substance-3-(2-chlorophenyl)-1-{2-[4-(4-fluorophenyl)piperazin-1-yl]-2-oxoethyl}-pyrrolidine-2,5-dione (6) showed more beneficial ED50 and protective index values than the reference drug—valproic acid (68.30 mg/kg vs. 252.74 mg/kg in the MES test and 28.20 mg/kg vs. 130.64 mg/kg in the 6 Hz (32 mA) test, respectively). Since anticonvulsant drugs are often effective in neuropathic pain management, the antinociceptive activity for two the promising compounds—namely, 6 and 19—was also investigated in the formalin model of tonic pain. Additionally, for the aforementioned compounds, the affinity for the voltage-gated sodium and calcium channels, as well as GABAA and TRPV1 receptors, was determined. As a result, the most probable molecular mechanism of action for the most active compound 6 relies on interaction with neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Compounds 6 and 19 were also tested for their neurotoxic and hepatotoxic properties and showed no significant cytotoxic effect.
Funder
Narodowe Centrum Nauki
Uniwersytet Jagielloński Collegium Medicum
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献