Green Synthesis and Antifungal Activities of Novel N-Aryl Carbamate Derivatives

Author:

Liu Xiyao12,Sun Yuyao1,Liu Lifang1,Duan Xufei1,You Shujun1,Yu Baojia1,Pan Xiaohong1,Guan Xiong1ORCID,Lin Ran3,Song Liyan1ORCID

Affiliation:

1. Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fujian Provincial University Key Laboratory of Green Energy and Environment Catalysts, College of New Energy and Materials, Ningde Normal University, Ningde 352100, China

3. College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Carbamate is a key structural motif in the development of fungicidal compounds, which is still promising and robust in the discovery of green pesticides. Herein, we report the synthesis and evaluation of the fungicidal activity of 35 carbamate derivatives, among which 19 compounds were synthesized in our previous report. These derivatives were synthesized from aromatic amides in a single step, which was a green oxidation process for Hofmann rearrangement using oxone, KCl and NaOH. Their chemical structures were characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry. Their antifungal activity was tested against seven plant fungal pathogens. Many of the compounds exhibited good antifungal activity in vitro (inhibitory rate > 60% at 50 μg/mL). Compound 1ag exhibited excellent broad-spectrum antifungal activities with inhibition rates close to or higher than 70% at 50 μg/mL. Notably, compound 1af demonstrated the most potent inhibition against F. graminearum, with an EC50 value of 12.50 μg/mL, while compound 1z was the most promising candidate fungicide against F. oxysporum (EC50 = 16.65 μg/mL). The structure–activity relationships are also discussed in this paper. These results suggest that the N-aryl carbamate derivatives secured by our green protocol warrant further investigation as potential lead compounds for novel antifungal agents.

Funder

the National Key R&D Program of China

Science and Technology Project of Fujian Market Supervision Administration

Foundation of Education Department of Fujian Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3