Excited State Dynamics of 8-Vinyldeoxyguanosine in Aqueous Solution Studied by Time-Resolved Fluorescence Spectroscopy and Quantum Mechanical Calculations

Author:

Martinez-Fernandez Lara,Gustavsson Thomas,Diederichsen UlfORCID,Improta Roberto

Abstract

The fluorescent base guanine analog, 8-vinyl-deoxyguanosine (8vdG), is studied in solution using a combination of optical spectroscopies, notably femtosecond fluorescence upconversion and quantum chemical calculations, based on time-dependent density functional theory (TD-DFT) and including solvent effect by using a mixed discrete-continuum model. In all investigated solvents, the fluorescence is very long lived (3–4 ns), emanating from a stable excited state minimum with pronounced intramolecular charge-transfer character. The main non-radiative decay channel features a sizeable energy barrier and it is affected by the polarity and the H-bonding properties of the solvent. Calculations provide a picture of dynamical solvation effects fully consistent with the experimental results and show that the photophysical properties of 8vdG are modulated by the orientation of the vinyl group with respect to the purine ring, which in turn depends on the solvent. These findings may have importance for the understanding of the fluorescence properties of 8vdG when incorporated in a DNA helix.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isomorphic Fluorescent Nucleoside Analogs;Handbook of Chemical Biology of Nucleic Acids;2023

2. Isomorphic Fluorescent Nucleoside Analogs;Handbook of Chemical Biology of Nucleic Acids;2023

3. DNA photostability;Theoretical and Computational Photochemistry;2023

4. 2-Oxopurine Riboside: A Dual Fluorescent Analog and Photosensitizer for RNA/DNA Research;The Journal of Physical Chemistry B;2022-06-09

5. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues;Chemical Society Reviews;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3