Antifungal Activity and In Silico Studies on 2-Acylated Benzo- and Naphthohydroquinones

Author:

Ríos David,Valderrama Jaime A.,Quiroga Gonzalo,Michea Jonathan,Salas FelipeORCID,Duarte Eduardo ÁlvarezORCID,Venegas-Casanova Edmundo A.,Jara-Aguilar Rafael,Navarro-Retamal CarlosORCID,Calderon Pedro Buc,Benites JulioORCID

Abstract

The high rates of morbidity and mortality due to fungal infections are associated with a limited antifungal arsenal and the high toxicity of drugs. Therefore, the identification of novel drug targets is challenging due to the several resemblances between fungal and human cells. Here, we report the in vitro antifungal evaluation of two acylphenols series, namely 2-acyl-1,4-benzo- and 2-acyl-1,4-naphthohydroquinones. The antifungal properties were assessed on diverse Candida and filamentous fungi strains through the halo of inhibition (HOI) and minimal inhibitory concentration (MIC). The antifungal activities of 2-acyl-1,4-benzohydroquinone derivatives were higher than those of the 2-acyl-1,4-naphthohydroquinone analogues. The evaluation indicates that 2-octanoylbenzohydroquinone 4 is the most active member of the 2-acylbenzohydroquinone series, with MIC values ranging from 2 to 16 μg/mL. In some fungal strains (i.e., Candida krusei and Rhizopus oryzae), such MIC values of compound 4 (2 and 4 μg/mL) were comparable to that obtained by amphotericin B (1 μg/mL). The compound 4 was evaluated for its antioxidant activity by means of FRAP, ABTS and DPPH assays, showing moderate activity as compared to standard antioxidants. Molecular docking studies of compound 4 and ADMET predictions make this compound a potential candidate for topical pharmacological use. The results obtained using the most active acylbenzohydroquinones are promising because some evaluated Candida strains are known to have decreased sensitivity to standard antifungal treatments.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3