Luminescent Properties of (Ca7ZrAl6O18-Ca3Al2O6-CaZrO3):Eu3+ Composite Ceramics and Tracing in the Hydration Process

Author:

Madej Dominika1ORCID,Kruk Andrzej2ORCID

Affiliation:

1. Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

2. Institute of Technology, University of the National Education Commission, Krakow, ul. Podchorążych 2, 30-084 Krakow, Poland

Abstract

In this work, solid-state reaction sintering was used to fabricate Ca7ZrAl6O18-Ca3Al2O6-CaZrO3:Eu3+ ternary composite ceramics and cements. The structural, microstructural, and spectroscopic properties of the ceramics with different Eu2O3 content were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), and spectrofluorimetry, respectively. The XRD patterns analyzed with Rietveld refinement confirm the presence of the orthorhombic phase of Ca7ZrAl6O18 and the cubic phase of Ca3Al2O6 in all the samples, indicating that doping of Eu3+ slightly changes the crystalline structure of both aluminate phosphors. EDS analysis revealed that the Eu doping element was strongly concentrated to the two phases, i.e., Ca7ZrAl6O18 and Ca3Al2O6, with the Eu concentrations of 8.45 wt.% and 8.26 wt.%, respectively. The luminescent properties of the ceramics doped with different Eu3+ ion concentrations were investigated by excitation and emission spectroscopy at room temperature. These results were compiled using a laser with an optical parametric oscillator (OPO) system. The obtained spectra indicated changes in the luminescence intensity and shape occurring with phase composition and Eu2O3 concentration. The emission spectra of the ceramics exhibit a strong dependence on the excitation wavelength in the range from 210 to 300 nm, and invariably, five peaks were assigned to the 5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+. The luminescence spectroscopy was then used to trace the early and long-term hydration behavior of cements. Thus, luminescence spectroscopy may provide a new tool for non-destructive testing of cement-based structures.

Funder

the statutory funds of the Faculty of Material Science and Ceramics, AGH University of Krakow, Poland

the statutory funds of the University of the National Education Commission, Krakow

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3