One-Dimensional Shaving-like BiVO4 Nanobelts: Synthesis, Characterization and Photocatalytic Activity with Methylene Blue

Author:

Liu Yuling1,Duan Shengxia1,Liu Jian2,Jin Xiaomin1,Dong Fengqiang3,Shi Guangge4,Wu Qingsheng3

Affiliation:

1. College of Chemistry and Chemical Engineering, Heze University, Daxue Road No. 2269, Heze 274015, China

2. College of Agriculture and Bioengineering, Heze University, Daxue Road No. 2269, Heze 274015, China

3. Department of Chemistry, TongJi University, Siping Road No. 1239, Shanghai 200092, China

4. Food and Drug Inspection and Testing Institute of Heze, Taihu Road No. 1999, Heze 274015, China

Abstract

One-dimensional shaving-like BiVO4 nanobelts were successfully synthesized via the oxide hydrothermal method (OHS), using V2O5 and Bi2O3 as raw materials and PEG 10000 (polyethylene glycol 10000) as a template. Multiple techniques, including XRD, SEM, TEM, HRTEM, UV–Vis, XPS, and photoelectrochemical measurements, were applied to characterize the obtained materials. The thickness of the BiVO4 nanobelt was approximately 10 nm, while the width was approximately 500 nm. EIS results showed that visible-light illumination caused the photogenerated charge of the BiVO4 nanobelts to have a faster transfer and a higher separation efficiency. Photocatalytic experiments indicated that with BiVO4 nanobelts as a catalyst, the degradation rate of MB (methylene blue) was close to 92.4%, and it disintegrated after two hours. Moreover, the pseudo-first-order kinetic model can be used to describe the photodecomposition reaction of MB catalysed by BiVO4 nanobelts. And this excellent photocatalytic activity of the shaving-like BiVO4 nanobelts may be related to their special morphology, narrow band gap (~2.19 eV), faster transfer and the separation efficiency of the photogenerated charge, leading to strong absorption in the visible region and improving the separation of the photogenerated electron–hole pairs. These novel monoclinic BiVO4 nanobelts exhibited great photocatalytic activity and are thus a promising candidate for application in visible-light-responsive photocatalysts.

Funder

the Natural Foundation of Shandong Province

the Key Research and Development Program of Shandong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3