Affiliation:
1. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Abstract
Morphological control of metal-organic frameworks (MOFs) at the micro/nanoscopic scale is critical for optimizing the electrochemical properties of them and their derivatives. In this study, manganese organic phosphate (Mn-MOP) with three distinct two-dimensional (2D) morphologies was synthesized by varying the molar ratio of Mn2+ to phenyl phosphonic acid, and one of the morphologies is a unique palm leaf shape. In addition, a series of 2D Mn-MOP derivatives were obtained by calcination in air at different temperatures. Electrochemical studies showed that 2D Mn-MOP derivative calcined at 550 °C and exhibited a superior specific capacitance of 230.9 F g−1 at 0.5 A g−1 in 3 M KOH electrolyte. The aqueous asymmetric supercapacitor and the constructed flexible solid-state device demonstrated excellent rate performance. This performance reveals the promising application of 2D Mn-MOP materials for energy storage.
Funder
National Natural Science Foundation of China
Program for Young Changjiang Scholars of the Ministry of Education, China