Novel Functionalized Cellulose Microspheres for Efficient Separation of Lithium Ion and Its Isotopes: Synthesis and Adsorption Performance

Author:

Chen Ichen,Xu Chenxi,Peng JingORCID,Han Dong,Liu SiqiORCID,Zhai Maolin

Abstract

The adsorption of lithium ions(Li+) and the separation of lithium isotopes have attracted interests due to their important role in energy storage and nuclear energy, respectively. However, it is still challenging to separate the Li+ and its isotopes with high efficiency and selectivity. A novel cellulose-based microsphere containing crown ethers groups (named as MCM-g-AB15C5) was successfully synthesized by pre-irradiation-induced emulsion grafting of glycidyl methacrylate (GMA) and followed by the chemical reaction between the epoxy group of grafted polymer and 4′-aminobenzo-15-crown-5 (AB15C5). By using MCM-g-AB15C5 as adsorbent, the effects of solvent, metal ions, and adsorption temperature on the adsorption uptake of Li+ and separation factor of 6Li/7Li were investigated in detail. Solvent with low polarity, high adsorption temperature in acetonitrile could improve the uptake of Li+ and separation factor of lithium isotopes. The MCM-g-AB15C5 exhibited the strongest adsorption affinity to Li+ with a separation factor of 1.022 ± 0.002 for 6Li/7Li in acetonitrile. The adsorption isotherms in acetonitrile is fitted well with the Langmuir model with an ultrahigh adsorption capacity up to 12.9 mg·g−1, indicating the unexpected complexation ratio of 1:2 between MCM-g-AB15C5 and Li+. The thermodynamics study confirmed the adsorption process is the endothermic, spontaneous, and chemisorption adsorption. As-prepared novel cellulose-based adsorbents are promising materials for the efficient and selective separation of Li+ and its isotopes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3