Affiliation:
1. School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
2. Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
3. Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
Abstract
Cobalt(III) compounds with tetradentate ligands have been widely employed to deliver cytotoxic and imaging agents into cells. A large body of work has focused on using cobalt(III)–cyclam scaffolds for this purpose. Here, we investigate the cytotoxic properties of cobalt(III) complexes containing 14-membered macrocycles related to cyclam. A breast cancer stem cell (CSC) in vitro model was used to gauge efficacy. Specifically, [Co(1,4,7,11-tetraazacyclotetradecane)Cl2]+ (1) and [Co(1-oxa-4,8,12-triazacyclotetradecane)Cl2]+ (2) were synthesised and characterised, and their breast CSC activity was determined. The cobalt(III) complexes 1 and 2 displayed micromolar potency towards bulk breast cancer cells and breast CSCs grown in monolayers. Notably, 1 and 2 displayed selective potency towards breast CSCs over bulk breast cancer cells (up to 4.5-fold), which was similar to salinomycin (an established breast CSC-selective agent). The cobalt(III) complexes 1 and 2 were also able to inhibit mammosphere formation at low micromolar doses (with respect to size and number). The mammopshere inhibitory effect of 2 was similar to that of salinomycin. Our studies show that cobalt(III) complexes with 1,4,7,11-tetraazacyclotetradecane and 1-oxa-4,8,12-triazacyclotetradecane macrocycles could be useful starting points for the development of new cobalt-based delivery systems that can transport cytotoxic and imaging agents into breast CSCs.
Funder
University of Leicester
Chinese Scholarship Council
EPSRC
Deutsche Forschungsgemeinschaft