Abstract
The FDA (U.S. Food and Drug Administration) has approved only a negligible number of poly(lactide-co-glycolide) (PLGA)-based microsphere formulations, indicating the difficulty in developing a PLGA microsphere. A thorough understanding of microsphere formulations is essential to meet the challenge of developing innovative or generic microspheres. In this study, the key factors, especially the key process factors of the marketed PLGA microspheres, were revealed for the first time via a reverse engineering study on Vivitrol® and verified by the development of a generic naltrexone-loaded microsphere (GNM). Qualitative and quantitative similarity with Vivitrol®, in terms of inactive ingredients, was accomplished by the determination of PLGA. Physicochemical characterization of Vivitrol® helped to identify the critical process parameters in each manufacturing step. After being prepared according to the process parameters revealed by reverse engineering, the GNM demonstrated similarity to Vivitrol® in terms of quality attributes and in vitro release (f2 = 65.3). The research on the development of bioequivalent microspheres based on the similar technology of Vivitrol® will benefit the development of other generic or innovative microspheres.
Funder
the National Key Technologies Research and Development Program for New Drugs of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献