Synthesis, Antifungal, and Antibacterial Activities of Novel Benzoylurea Derivatives Containing a Pyrimidine Moiety

Author:

An Jiansong1,Lan Wenjun1,Fei Qiang1,Li Pei234ORCID,Wu Wenneng1

Affiliation:

1. School of Food Science and Engineering, Guiyang University, Guiyang 550005, China

2. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China

3. Natural Products Research Center of Guizhou Province, Guiyang 550000, China

4. Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556011, China

Abstract

To explore more efficient and less toxic antibacterial and antifungal pesticides, we utilized 2,6-difluorobenzamide as a starting material and ultimately synthesized 23 novel benzoylurea derivatives containing a pyrimidine moiety. Their structures were characterized and confirmed by 1H NMR, 13C NMR, 19F NMR, and HRMS. The bioassay results demonstrated that some of the title compounds exhibited moderate to good in vitro antifungal activities against Botrytis cinerea in cucumber, Botrytis cinerea in tobacco, Botrytis cinerea in blueberry, Phomopsis sp., and Rhizoctonia solani. Notably, compounds 4j and 4l displayed EC50 values of 6.72 and 5.21 μg/mL against Rhizoctonia solani, respectively, which were comparable to that of hymexazol (6.11 μg/mL). Meanwhile, at 200 and 100 concentrations, the target compounds 4a–4w exhibited lower in vitro antibacterial activities against Xanthomonas oryzae pv. oryzicola and Xanthomonas citri subsp. citri, respectively, compared to those of thiodiazole copper. Furthermore, the molecular docking simulation demonstrated that compound 4l formed hydrogen bonds with SER-17 and SER-39 of succinate dehydrogenase (SDH), providing a possible explanation for the mechanism of action between the target compounds and SDH. This study represents the first report on the antifungal and antibacterial activities of novel benzoylurea derivatives containing a pyrimidine moiety.

Funder

Guizhou Science and Technology Fund Project

Guizhou Provincial Science and Technology Project

Education Department of Guizhou Province Natural Science Research Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3