Silk Fibroin Promotes the Regeneration of Pancreatic β-Cells in the C57BL/KsJ-Leprdb/db Mouse

Author:

Park So-young,Kim Boyoung,Lee Yun KyungORCID,Lee Sueun,Chun Jin Mi,Suh Jun-GyoORCID,Park Jun Hong

Abstract

Diabetes mellitus is a chronic metabolic disease, and its progression leads to serious complications. Although various novel therapeutic approaches for diabetes mellitus have developed in the last three decades, its prevalence has been rising more rapidly worldwide. Silk-related materials have been used as anti-diabetic remedies in Oriental medicine and many studies have shown the effects of silk fibroin (SF) in both in vitro and in vivo models. In our previous works, we reported that hydrolyzed SF improved the survival of HIT-T15 cells under high glucose conditions and ameliorated diabetic dyslipidemia in a mouse model. However, we could not provide a precise molecular mechanism. To further evaluate the functions of hydrolyzed SF on the pancreatic β-cell, we investigated the effects of hydrolyzed SF on the pancreatic β-cell proliferation and regeneration in the mouse model. Hydrolyzed SF induced the expression of the proliferating cell nuclear antigen (PCNA) and reduced the apoptotic cell population in the pancreatic islets. Hydrolyzed SF treatment not only induced the expression of transcription factors involved in the pancreatic β-cell regeneration in RT-PCR results but also increased neurogenin3 and Neuro D protein levels in the pancreas of those in the group treated with hydrolyzed SF. In line with this, hydrolyzed SF treatment generated insulin mRNA expressing small cell colonies in the pancreas. Therefore, our results suggest that the administration of hydrolyzed SF increases the pancreatic β-cell proliferation and regeneration in C57BL/KsJ-Leprdb/db mice.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3