Novel Lanthanide Complexes Synthesized from 3-Dimethylamino Benzoic Acid and 5,5′-Dimethyl-2,2′ Bipyridine Ligand: Crystal Structure, Thermodynamics, and Fluorescence Properties

Author:

Hao Ya-Fan1,Xu Su-Ling2,Shi Quan3,Zhao Jin-Jin1,Ren Ning4,Gao Jie5ORCID,Zhang Jian-Jun1ORCID

Affiliation:

1. Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China

2. Hebei Special Equipment Supervision and Inspection Institute, Shijiazhuang 050000, China

3. Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

4. Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan 056005, China

5. Graduate School, Hebei GEO University, Shijiazhuang 050031, China

Abstract

Two isostructural lanthanide complexes were synthesized by solvent evaporation with 3-dimethylaminobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine as ligands. The general formula of the structure is a [Ln(3-N,N-DMBA)3(5,5′-DM-2,2′-bipy)]2·2(3-N,N-DMHBA), Ln = (Gd(1), Tb(2)), 3-N,N-DMBA = 3-Dimethylamino benzoate, 5,5′-DM-2,2′-bipy = 5,5′-dimethyl-2,2′ bipyridine. Both complexes exhibited dimeric structures based on X-ray diffraction analysis. At the same time, infrared spectroscopy and Raman spectroscopy were used to measure the spectra of the complex. A thermogravimetric infrared spectroscopy experiment was performed to investigate the thermal stability and decomposition mechanism of the complexes. Measurements of the low-temperature heat capacity of the complexes were obtained within the temperature range of 1.9 to 300 K. The thermodynamic function was calculated by heat capacity fitting. In addition, the fluorescence spectra of complex 2 were studied and the fluorescence lifetime values were determined, and the energy transfer mechanism of complex 2 was elucidated.

Funder

National Natural Science Foundation of China

Science and Technology Science Development Fund of Hebei Normal University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3