Hydroponic Ginseng ROOT Mediated with CMC Polymer-Coated Zinc Oxide Nanoparticles for Cellular Apoptosis via Downregulation of BCL-2 Gene Expression in A549 Lung Cancer Cell Line

Author:

Jin Yinping,Rupa Esrat JahanORCID,Nahar Jinnatun,Ling Li,Puja Aditi MitraORCID,Akter Reshmi,Yang Deok ChunORCID,Kang Se ChanORCID,Zhang Hao

Abstract

The unique and tailorable physicochemical features of zinc oxide nanoparticles (ZnO-NPs) synthesized from green sources make them attractive for use in cancer treatment. Hydroponic-cultured ginseng-root-synthesized ZnO-NPs (HGRCm-ZnO NPs) were coated with O-carboxymethyl chitosan (CMC) polymer, which stabilized and enhanced the biological efficacy of the nanoparticles. Nanoparticles were characterized by X-ray diffraction (XRD), UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS). The flower-shaped nanoparticles were crystalline in nature with a particle size of 28 nm. To evaluate if these NPs had anti-lung cancer activity, analysis was performed on a human lung carcinoma cell line (A549). HGRCm-ZnO nanoparticles showed less toxicity to normal keratinocytes (HaCaTs), at concentrations up to 20 µg/mL, than A549 cancer cells. Additionally, these NPs showed dose-dependent colony formation and cell migration inhibition ability, which makes them more promising for lung cancer treatment. Additionally, Hoechst and propidium iodide dye staining also confirmed that the NP formulation had apoptotic activity in cancer cells. Further, to evaluate the mechanism of cancer cell death via checking the gene expression, HGRCm ZnO NPs upregulated the BAX and Caspase 3 and 9 expression levels but downregulated Bcl-2 expression, indicating that the nanoformulation induced mitochondrial-mediated apoptosis. Moreover, these preliminary results suggest that HGRCm ZnO NPs can be a potential candidate for future lung cancer treatment.

Funder

Scientific and Technological Innovation Project of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference59 articles.

1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Sung;CA Cancer J. Clin.,2021

2. World Health Organization (WHO) (2020, December 11). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019. WHO, Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death.

3. Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway;Liu;Biomed. Pharmacother.,2019

4. Adjuvant therapy for endometrial cancer in the era of molecular classification: Radiotherapy, chemoradiation and novel targets for therapy;Horeweg;Int. J. Gynecol. Cancer,2021

5. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer;Kim;J. Ginseng Res.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3